Optimization methodology based on neural networks and reference point algorithm applied to fuzzy multiobjective optimization problems
نویسنده
چکیده
Artificial neural networks are massively paralleled distributed computation and fast convergence and can be considered as an efficient method to solve real-time optimization problems. In this paper, we propose reference point based neural network algorithm for solving fuzzy multiobjective optimization problems MOOP. The target is to identify the Pareto-optimal region closest to the reference points. Our approach has two characteristic features. Firstly, fuzzy multiobjective optimization problem (F-MOOP) has been transformed to crisp multiobjective optimization problem (C-MOOP) by means of Alpha-cut. Secondly a neural networks based reference point algorithm is implemented to solve C-MOOP in such a way that they integrate the decision maker DM early in the optimization process instead of leaving him/her alone with the final choice of one solution among the whole Pareto optimal set. Such procedures will provide the DM with a set of solutions near her/his preference so that a better and a more reliable decision can be made. Simulation runs on engineering application problems demonstrate their usefulness in practice and show another use of a neural network methodology in allowing the DM to solve multiobjective optimization problems better and with more confidence.
منابع مشابه
Prediction of Bubble Point Pressure & Asphaltene Onset Pressure During CO2 Injection Using ANN & ANFIS Models
Although CO2 injection is one of the most common methods in enhanced oil recovery, it could alter fluid properties of oil and cause some problems such as asphaltene precipitation. The maximum amount of asphaltene precipitation occurs near the fluid pressure and concentration saturation. According to the description of asphaltene deposition onset, the bubble point pressure has a very special imp...
متن کاملOptimizing Multiple Response Problem Using Artificial Neural Networks and Genetic Algorithm
This paper proposes a new intelligent approach for solving multi-response statistical optimization problems. In most real world optimization problems, we are encountered adjusting process variables to achieve optimal levels of output variables (response variables). Usual optimization methods often begin with estimating the relation function between the response variable and the control variab...
متن کاملPrediction-Based Portfolio Optimization Model for Iran’s Oil Dependent Stocks Using Data Mining Methods
This study applied a prediction-based portfolio optimization model to explore the results of portfolio predicament in the Tehran Stock Exchange. To this aim, first, the data mining approach was used to predict the petroleum products and chemical industry using clustering stock market data. Then, some effective factors, such as crude oil price, exchange rate, global interest rate, gold price, an...
متن کاملNew optimality conditions for multiobjective fuzzy programming problems
In this paper we study fuzzy multiobjective optimization problems defined for $n$ variables. Based on a new $p$-dimensional fuzzy stationary-point definition, necessary efficiency conditions are obtained. And we prove that these conditions are also sufficient under new fuzzy generalized convexity notions. Furthermore, the results are obtained under general differentiability hypothesis.
متن کاملPrediction of Gain in LD-CELP Using Hybrid Genetic/PSO-Neural Models
In this paper, the gain in LD-CELP speech coding algorithm is predicted using three neural models, that are equipped by genetic and particle swarm optimization (PSO) algorithms to optimize the structure and parameters of neural networks. Elman, multi-layer perceptron (MLP) and fuzzy ARTMAP are the candidate neural models. The optimized number of nodes in the first and second hidden layers of El...
متن کامل